Junos MPLS Fundamentals (JMF)

This Course Includes neXT LIVE 365

LEARN FOR 365 DAYS!


Sunset Learning Institute believes in a 365-day learning experience that begins immediately, regardless of when you attend your ILT course. At SLI, you get a range of learning opportunities, from instructor-led hands-on training, to self-directed, customizable learning paths based on your environment, your needs, and your level of experience. We provide the tools and options, and you decide what you need, when you need it, and how you want to learn it!


  • Immediate access to supplemental learning assets that are INCLUDED with your purchase of the above instructor-led training course: 365 Days of Access to SLI’s Entire Juniper Video Reference Library (VRL), not just the 5-day class you sign up for (hundreds of searchable, on-demand learning bytes in 5-15-minute videos)
  • 365 Days of Unlimited Access to Delta Sessions - What’s Not Covered in Class! (Version Upgrades, Industry Updates, Etc.)
  • 365 Days of Unlimited 24x7 Access to SLI's Community - Collaborate with SLI Instructors and Other Members (Monitored Daily by SLI Instructors) See Community Demo
  • 365 Days of Unlimited Access to Interactive neXTpertise Sessions and other IT Resources with SLI Instructors (featured hot topics, exam prep, etc.) See Upcoming neXTpertise Sessions
  • Unlimited Access to Hosted Webinars and All Previously Recorded Sessions
  • Unlimited Access to your Digital Courseware

See Entire Portfolio


  • Benefits:Training that fits your needs (from high intensity to small learning bytes)
  • Build immediate competency - start at time of purchase!
  • Gain know-how and skills gaps with limited work disruptions
  • Get quick answers to daily challenges - live interaction!

Overview

This two-day course is designed to provide students with a solid foundation on Multiprotocol Label Switching (MPLS). After introducing concepts such as MPLS forwarding and the structure of the MPLS header, the course will delve into the configuration and operation of the two main label distribution protocols, RSVP and LDP. Special emphasis is given to the central topics of traffic engineering and MPLS traffic protection, including fast reroute, link/node protection, and LDP loop-free alternate. The concepts are put into practice with a series of in-depth hands-on labs, which will allow participants to gain experience in configuring and monitoring MPLS on Junos OS devices. These hands-on labs utilize Juniper Networks vMX Series devices using the Junos OS Release 16.1R3.10, but are also applicable to other MX Series devices.

Target Audience

This course benefits individuals responsible for configuring and monitoring devices running the Junos OS.

Prerequisites

Students should have intermediate-level networking knowledge and should be familiar with the Junos OS command-line interface (CLI). Students should also attend the Introduction to the Junos Operating System (IJOS), Junos Routing Essentials (JRE), and Junos Intermediate Routing (JIR) courses prior to attending this class.

Course Objectives

After successfully completing this course, you should be able to:

  • Describe the history and rationale for MPLS, as well as its basic terminology.
  • Explain the MPLS label operations (push, pop, swap) and the concept of label-switched path (LSP).
  • Describe the configuration and verification of MPLS forwarding.
  • Describe the functionalities and operation of RSVP and LDP.
  • Configure and verify RSVP-signaled and LDP-signaled LSPs.
  • Select and configure the appropriate label distribution protocol for a given set of requirements.
  • Describe the default Junos OS MPLS traffic engineering behavior.
  • Explain the Interior Gateway Protocol (IGP) extensions used to build the Traffic Engineering Database (TED).
  • Describe the Constrained Shortest Path First (CSPF) algorithm, its uses, and its path selection process.
  • Describe administrative groups and how they can be used to influence path selection.
  • Describe the default traffic protection behavior of RSVP-signaled LSPs.
  • Explain the use of primary and secondary LSPs.
  • Describe the operation and configuration of fast reroute.
  • Describe the operation and configuration of link and node protection.
  • Describe the operation and configuration of LDP loop-free alternate.
  • Describe the LSP optimization options.
  • Explain LSP priority and preemption.
  • Describe the behavior of fate sharing.
  • Describe how SRLG changes the CSPF algorithm when computing the path of a secondary LSP.
  • Explain how extended admin groups can be used to influence path selection.
  • Explain the purpose of several miscellaneous MPLS features.

Course Outline

Day 1

Chapter 1: Course Introduction
Chapter 2: MPLS Fundamentals

  • MPLS Foundation
  • Terminology
  • MPLS Configuration
  • MPLS Packet Forwarding
  • Lab: MPLS Fundamental
Chapter 3: Label Distribution Protocols
  • Label Distribution Protocols
  • RSVP
  • LDP
  • Lab: Label Distribution Protocols
Chapter 4: Routing Table Integration
  • Mapping Next Hops to LSPs
  • Route Resolution Example
  • Route Resolution Summary
  • IGP Passive Versus Next-Hop Self for BGP Destinations
  • Lab: Routing Table Integration
Day 2

Chapter 5: Constrained Shortest Path First
  • RSVP Behavior Without CSPF
  • CSPF Algorithm
  • CSPF Tie Breaking
  • Administrative Groups
  • Interarea Traffic Engineered LSPs
  • Lab: CSPF
Chapter 6: Traffic Protection and LSP Optimization
  • Default Traffic Protection Behavior
  • Primary and Secondary LSPs
  • Fast Reroute
  • RSVP Link Protection
  • LDP LFA and Link Protection
  • LSP Optimization
  • Lab: Traffic Protection
Chapter 7: Fate Sharing
  • Junos OS Fate Sharing
  • SRLG
  • Extended Admin Groups
  • Lab: Fate Sharing
Chapter 8: Miscellaneous MPLS Features
  • Forwarding Adjacencies
  • Policy Control over LSP Selection
  • LSP Metrics
  • Automatic Bandwidth
  • Container LSPs
  • TTL Handling
  • Explicit Null Configuration
  • MPLS Pings
  • Lab: Miscellaneous MPLS Features

SLI Main Menu