

Cisco IOS Voice Translations – Part 2:

Writing and Applying Voice Translation Rules and Voice Translation Profiles
By Maren Mahoney, Sunset Learning Cisco Unified Communications Specialized Instructor

This is the second part of a series of four articles on Cisco IOS Voice Translations. In Part 1, I
covered how to read and write simple regular expressions to construct individual translation
rules. This article will cover how those rules are combined to create and apply rulesets and
voice translation profiles. Parts 3 and 4 will discuss advanced regular expressions and special
applications of voice translation rules, and tools you can use to test what you have built.
Here are the links to the other posts in this series that have been written so far:

Part 1: http://www.sunsetlearning.com/training-resources/cisco-ios-voice-translationspart-1-the-
basics-of-voice-translation-rules/

First, let’s review the building blocks of voice translations in IOS:

1) Rule: A single match/replace rule. (Covered in Part 1)
2) Voice Translation Rule: A set of up to 15 individual rules. A Voice Translation Rule will

be used to match numbers in a called party, calling party or redirect number. Since it is a
set of rules, it can be used to match one or more patterns of numbers and have each
pattern manipulated in a different way.

3) Voice Translation Profile: A set of one or more Voice Translation Rules. A Voice
Translation Profile allows you to indicate one Voice Translation Rule for called party, one
Voice Translation Rule for calling party and one Voice Translation Rule for redirect
number.

4) Application of a Voice Translation Profile: Profiles are most commonly applied to ports
and dial-peers. When a profile is applied, a direction is declared. One profile can be
applied to calls inbound to the port or dial-peer, and another can be applied to calls that
are processed through that same port or dial-peer when flowing outbound.

This post will cover the basics of 2, 3 and 4. While that may seem like a lot, the basics flow
together nicely. (Part 3 will examine the not-so-basics of 2, 3 and 4.) First let’s look at how to
create #2, a Voice Translation Rule. A Voice Translation Rule is just a list of individual rules,
which you already know how to write.

Here is the scenario: suppose you have a headquarters and two branch offices. All calls for all
three sites enter the organization through ISDN PRI circuits at headquarters. As the calls arrive
over the circuits, you will need to strip digits from the 10-digit DID numbers and turn them into 4-
digit extensions. Since the three locations have very different DID numbers, a single rule will not
be able to match/replace the three sets of DIDs. Therefore, we need to make a list of rules.

 voice translation-rule 1
 rule 1 /7035557…/ /7…/
 rule 2 /9725553[0-4]../ /3.../
 rule 3 /4065559[23]../ /5.../

http://www.sunsetlearning.com/training-resources/cisco-ios-voice-translationspart-1-the-basics-of-voice-translation-rules/
http://www.sunsetlearning.com/training-resources/cisco-ios-voice-translationspart-1-the-basics-of-voice-translation-rules/

The first rule is for the headquarters and is the same example that we used in Part 1. The
second rule is for the first branch in Dallas. Notice that the “[0-4]” in the match string is a
variable and can therefore be replaced by a simple “.” in the replace string.

The third rule is more interesting. Generally, internal dialplans do not use 9 as the initial digit for
a 4-digit extension because it conflicts with using 9 as an outside (PSTN) access code. Since
our provider has issued us the 9XXX block within the 555 exchange we can’t simply strip the
first seven digits to create a 4-digit desk number as we did in rule 1 and rule 2. We need to do
something else to resolve the conflict. Several strategies can be used to solve this problem. Our
organization has decided to make the desk numbers 5XXX in Montana (our second branch).
This means that for rule 3 we need to override the 9 in the match string with a 5 in the replace
string. (Another strategy would be to use 8, rather than 9, as the PSTN access code.)

We now have a set of rules that we can apply to the called-party of inbound calls.

What if, for those same inbound calls, we want to modify the caller-id to prefix the access
numbers (9, 91 or 9011) so that the calls can be dialed easily from a user’s call history? To
accomplish this, we need another set of rules:

 voice translation-rule 2
 rule 1 /^…….$/ /9&/
 rule 2 /^[2-9]..[2-9]…...$/ /91&/
 rule 3 /^1[2-9]..[2-9]……$/ /9&/
 rule 4 /.*/ /9011&/

The ampersand (&) in the replace string means “put everything from the match string here”. So,
in this voice translation rule, a 7-digit caller-id would be prefixed by a 9, a 10-digit number that
conformed to the North American Numbering Plan would be prefixed by 91 (or just 9, if the 1
was already in the caller-id) and all other calls would, presumably, be international and would be
prefixed by 9011.*

(Note: This method of manipulating caller-id is clumsy and definitely not a best-practice. I use it
here as a simple example for the purpose of explaining Voice Translation Rules and Profiles. In
Part 3 of this series, we will look at a better way of manipulating caller-id.)

Now we have a pair of Voice Translation Rules that need to be applied to calls inbound over our
ISDN circuits. The next step is to combine the two Voice Translation Rules into a Voice
Translation Profile. When you create a Voice Translation Profile, you have to give it a “name” so
that it can be referenced by the dial-peer or port. You also have to declare which ruleset should
apply to called-party and which ruleset should be applied to caller-id. Here is our example:

 voice translation-profile PSTN-IN
 translate called 1
 translate calling 2

*
 The match string /.*/ assumes that there is at least one digit in the string, but after that the string can be any

length. This is different than a match string of // which would match a NULL field (no digits).

The name used to identify a voice translation-profile can be alphanumeric, and can be quite
long. Feel free to create a friendly name that helps you remember what a profile is for when you
– or someone else – looks at it months after you created it. For example, you might call a rule
“in-from-MT-internal-to-Intl” to identify calls inbound from internal extensions at your Montana
location where the dialed number is international.

So far we have created rules, put the rules into Voice Translation Rule rulesets, and assembled
rulesets into a Voice Translation Profile. All that remains is to apply the Voice Translation Profile
to a port or dial-peer.

In our example we have an ISDN PRI on, let’s say, port 0/0/0. To apply the Voice Translation
Profile to the port, we need to define which profile to use and whether the profile should be
applied to incoming or outgoing calls.

 voice-port 0/0/0:23
 translation-profile incoming PSTN-IN

When applying a Voice Translation Profile, it is important to note that the “name” of the profile is
case-sensitive – and the router will not warn you if you make a mistake. For instance, what if
you type the name of the profile in as “PSTN-IN” but apply it with “pstn-in”? In that case, the
router will take the command as typed, and when a call comes in it would look for a profile
called “pstn-in”. Not finding one, it would not apply any ruleset at all and pass the digits as-
received. (In Part 4 we will look at a debug that will help identify this type of problem.)

If you have more than one ISDN circuit, you have two choices: either apply the profile to each
incoming voice port one-by-one, or define a default incoming POTS dial-peer and apply the
profile to that. (Having default incoming dial-peers for POTS and VOIP calls is a recommended
practice.) If you have multiple incoming dial-peers, you would apply incoming translation profiles
as needed.

dial-peer voice 1 pots
 incoming called-number .
 translation-profile incoming PSTN-IN
 direct-inward-dial

That could be read as: For all calls coming in on any POTS circuit, as long as there is at least
one digit in the called party, then apply translation-profile PSTN-IN and immediately attempt to
match an outbound dial-peer.

For inbound calls we are done – but what about outbound calls? Another action your router can
take is to properly format your internal users’ caller-id for calls outbound to the PSTN. We
created rules like this in Part 1. Here is a ruleset for our three sites:

 voice translation-rule 3
 rule 1 /^7…$/ /7035557…/
 rule 2 /^3[0-4]..$/ /9725553.../
 rule 3 /^5[23]..$/ /4065559.../

And here is the voice translation-profile that has the router use voice translation-rule 3 to modify
caller-id:

 voice translation-profile PSTN-OUT
 translate calling 3

And finally, here is the voice translation-profile applied outbound on voice-port 0/0/0:23 (Note
that the translation profile for incoming calls is still also applied to the port):

 voice-port 0/0/0:23
 translation-profile incoming PSTN-IN
 translation-profile outgoing PSTN-OUT

Or, you could apply the translation-profile to dial-peers used for PSTN calls:

 dial-peer voice 9 pots
 destination-pattern 9[2-9]..[2-9]…...
 translation-profile outgoing PSTN-OUT
 port 0/0/0:23

Those are the basic building blocks of implementing digit manipulation on an IOS router. It can
be as simple or as complex as you need it to be. A good suggestion for helping to build the
pieces is to write each step out in words, and then figure out the exact syntax for each step.
This is similar to writing an outline before you write a business report, or similar to building what
programmers call “pseudocode” before starting to build the actual application.

In the next post we will look at some of the more complex arguments of, and applications for,
voice translations such as identifying calls based on type of number (TON) or blocking calls
based on caller-id.

